Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 298: 118856, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033616

RESUMO

Toluene is an air pollutant widely used as an organic solvent in industrial production and emitted by fossil fuel combustion, in addition to being used as a drug of abuse. Its toxic effects in the central nervous system have not been well established, and how and which neurons are affected remains unknown. Hence, this study aimed to fill this gap by investigating three central questions: 1) How does toluene induce neurotoxicity? 2) Which neurons are affected? And 3) What are the long-term effects induced by airborne exposure to toluene? To this end, a Caenorhabditis elegans model was employed, in which worms at the fourth larval stage were exposed to toluene in the air for 24 h in a vapor chamber to simulate four exposure scenarios. After the concentration-response curve analysis, we chose scenarios 3 (E3: 792 ppm) and 4 (E4: 1094 ppm) for the following experiments. The assays were performed 1, 48, or 96 h after removal from the exposure environments, and an irreversible reduction in neuron fluorescence and morphologic alterations were observed in different neurons of exposed worms, particularly in the dopaminergic neurons. Moreover, a significant impairment in a dopaminergic-dependent behavior was also associated with negative effects in healthspan endpoints, and we also noted that mitochondria may be involved in toluene-induced neurotoxicity since lower adenosine 5'-triphosphate (ATP) levels and mitochondrial viability were observed. In addition, a reduction of electron transport chain activity was evidenced using ex vivo protocols, which were reinforced by in silico and in vitro analysis, demonstrating toluene action in the mitochondrial complexes. Based on these findings model, it is plausible that toluene neurotoxicity can be initiated by complex I inhibition, triggering a mitochondrial dysfunction that may lead to irreversible dopaminergic neuronal death, thus impairing neurobehavioral signaling.


Assuntos
Dopamina , Tolueno , Animais , Caenorhabditis elegans , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias , Tolueno/metabolismo , Tolueno/toxicidade
2.
Mol Neurobiol ; 58(9): 4615-4627, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34148214

RESUMO

Traumatic brain injury (TBI) is considered a public health problem and is often related to motor and cognitive disabilities, besides behavioral and emotional changes that may remain for the rest of the subject's life. Resident astrocytes and microglia are the first cell types to start the inflammatory cascades following TBI. It is widely known that continuous or excessive neuroinflammation may trigger many neuropathologies. Despite the large numbers of TBI cases, there is no effective pharmacological treatment available. This study aimed to investigate the effects of the new hybrid molecule 3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro1H-pyrido[2,3-b][1,5]benzodiazepine (JM-20) on TBI outcomes. Male Wistar rats were submitted to a weight drop model of mild TBI and treated with a single dose of JM-20 (8 mg/kg). Twenty-four hours after TBI, JM-20-treated animals showed improvements on locomotor and exploratory activities, and short-term memory deficits induced by TBI improved as well. Brain edema was present in TBI animals and the JM-20 treatment was able to prevent this change. JM-20 was also able to attenuate neuroinflammation cascades by preventing glial cells-microglia and astrocytes-from exacerbated activation, consequently reducing pro-inflammatory cytokine levels (TNF-α and IL-1ß). BDNF mRNA level was decreased 24 h after TBI because of neuroinflammation cascades; however, JM-20 restored the levels. JM-20 also increased GDNF and NGF levels. These results support the JM-20 neuroprotective role to treat mild TBI by reducing the initial damage and limiting long-term secondary degeneration after TBI.


Assuntos
Benzodiazepinas/farmacologia , Concussão Encefálica/metabolismo , Cognição/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Niacina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Niacina/farmacologia , Niacina/uso terapêutico , Ratos , Ratos Wistar
3.
Brain Res Bull ; 163: 31-39, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681970

RESUMO

Traumatic brain injury (TBI) constitutes a heterogeneous cerebral insult induced by traumatic biomechanical forces. Mitochondria play a critical role in brain bioenergetics, and TBI induces several consequences related with oxidative stress and excitotoxicity clearly demonstrated in different experimental model involving TBI. Mitochondrial bioenergetics alterations can present several targets for therapeutics which could help reduce secondary brain lesions such as neuropsychiatric problems, including memory loss and motor impairment. Guanosine (GUO), an endogenous neuroprotective nucleoside, affords the long-term benefits of controlling brain neurodegeneration, mainly due to its capacity to activate the antioxidant defense system and maintenance of the redox system. However, little is known about the exact protective mechanism exerted by GUO on mitochondrial bioenergetics disruption induced by TBI. Thus, the aim of this study was to investigate the effects of GUO in brain cortical and hippocampal mitochondrial bioenergetics in the mild TBI model. Additionally, we aimed to assess whether mitochondrial damage induced by TBI may be related to behavioral alterations in rats. Our findings showed that 24 h post-TBI, GUO treatment promotes an adaptive response of mitochondrial respiratory chain increasing oxygen flux which it was able to protect against the uncoupling of oxidative phosphorylation (OXPHOS) induced by TBI, restored the respiratory electron transfer system (ETS) established with an uncoupler. Guanosine treatment also increased respiratory control ratio (RCR), an indicator of the state of mitochondrial coupling, which is related to the mitochondrial functionality. In addition, mitochondrial bioenergetics failure was closely related with locomotor, exploratory and memory impairments. The present study suggests GUO treatment post mild TBI could increase GDP endogenous levels and consequently increasing ATP levels promotes an increase of RCR increasing OXPHOS and in substantial improve mitochondrial respiration in different brain regions, which, in turn, could promote an improvement in behavioral parameters associated to the mild TBI. These findings may contribute to the development of future therapies with a target on failure energetic metabolism induced by TBI.


Assuntos
Concussão Encefálica/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Guanosina/uso terapêutico , Locomoção/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Metabolismo Energético/fisiologia , Guanosina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Locomoção/fisiologia , Masculino , Memória de Longo Prazo/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar
4.
Mol Neurobiol ; 57(10): 4202-4217, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32685997

RESUMO

Fibromyalgia (FM) is one of the most common musculoskeletal pain conditions. Although the aetiology of FM is still unknown, mitochondrial dysfunction and the overproduction of reactive oxygen intermediates (ROI) are common characteristics in its pathogenesis. The reserpine experimental model can induce FM-related symptoms in rodents by depleting biogenic amines. However, it is unclear whether reserpine causes other pathophysiologic characteristics of FM. So far, no one has investigated the relevance of mitochondrial dysfunction in the reserpine-induced experimental FM model using protection- and insult-based mitochondrial modulators. Reserpine (1 mg/kg) was subcutaneously injected once daily for three consecutive days in male Swiss mice. We carried out analyses of reserpine-induced FM-related symptoms, and their modulation by using mitochondrial insult on ATP synthesis (oligomycin; 1 mg/kg, intraperitoneally) or mitochondrial protection (coenzyme Q10; 150 mg/kg/5 days, orally). We also evaluated the effect of reserpine on mitochondrial function using high-resolution respirometry and oxidative status. Reserpine caused nociception, loss in muscle strength, and anxiety- and depressive-like behaviours in mice that were consistent with clinical symptoms of FM, without inducing body weight and temperature alterations or motor impairment. Reserpine-induced FM-related symptoms were increased by oligomycin and reduced by coenzyme Q10 treatment. Reserpine caused mitochondrial dysfunction by negatively modulating the electron transport system and mitochondrial respiration (ATP synthesis) mainly in oxidative muscles and the spinal cord. These results support the role of mitochondria in mediating oxidative stress and FM symptoms in this model. In this way, reserpine-inducing mitochondrial dysfunction and increased production of ROI contribute to the development and maintenance of nociceptive, fatigue, and depressive-like behaviours.


Assuntos
Fibromialgia/induzido quimicamente , Fibromialgia/patologia , Mitocôndrias/patologia , Reserpina/efeitos adversos , Animais , Comportamento Animal , Depressão/complicações , Depressão/fisiopatologia , Modelos Animais de Doenças , Fadiga/complicações , Fadiga/fisiopatologia , Fibromialgia/fisiopatologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Músculos/efeitos dos fármacos , Músculos/patologia , Nociceptividade/efeitos dos fármacos , Oxirredução , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
5.
Bioorg Chem ; 98: 103727, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179285

RESUMO

Organic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity. Here we tested some in vitro parameters after the exposure of mitochondria to different concentrations of ß-selenoamines 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS 1,2-bis(2-methoxyphenyl)diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). We also evaluated the antibacterial activity of ß-selenoamines and diselenides against Methicillin-resistant Staphylococcus aureus and Escherichia coli. Our results showed that o-methoxy insertion increased the antioxidant properties, without affecting the mitochondrial membrane potential. The compounds with a p-methyl insertion affected the mitochondrial membrane potential and significantly decreased the State III respiration and RCR. Besides, the p-methyl compounds presented antibacterial activity at lower concentrations than those shown in o-methoxy, precisely by the same mechanism that promotes damage to thiol groups and better absorption in gram-positive bacteria due to their relationship with cell wall constituents. Finally, our study confirms that structural modifications in organic selenium compounds provide changes in mitochondrial functioning but also raise their antibacterial effect. This strategy can be used as a target for the development of new enough potent antibacterial to restrict the advance of resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
6.
Biomed Pharmacother ; 111: 1438-1446, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841459

RESUMO

Mitochondria play an important role in cell life and in the regulation of cell death. In addition, mitochondrial dysfunction contributes to a wide range of neuropathologies. The nucleoside Guanosine (GUO) is an endogenous molecule, presenting antioxidant properties, possibly due to its direct scavenging ability and/or from its capacity to activate the antioxidant defense system. GUO demonstrate a neuroprotective effect due to the modulation of the glutamatergic system and maintenance of the redox system. Thus, considering the few studies focused on the direct effects of GUO on mitochondrial bioenergetics, we designed a study to evaluate the in vitro effects of GUO on rat mitochondrial function, as well as against Ca2+-induced impairment. Our results indicate that GUO prevented mitochondrial dysfunction induced by Ca2+ misbalance, once GUO was able to reduce mitochondrial swelling in the presence of Ca2+, as well as ROS production and hydrogen peroxide levels, and to increase manganese superoxide dismutase activity, oxidative phosphorylation and tricarboxylic acid cycle activities. Our study indicates for the first time that GUO could direct prevent the mitochondrial damage induced by Ca2+ and that these effects were not related to its scavenging properties. Our data indicates that GUO could be included as a new pharmacological strategy for diseases linked to mitochondrial dysfunction.


Assuntos
Cálcio/metabolismo , Guanosina/farmacologia , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
7.
J Biochem Mol Toxicol ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800171

RESUMO

Thioacetamide (TAA) is a hepatotoxin that rapidly triggers the necrotic process and oxidative stress in the liver. Nevertheless, organic selenium compounds, such as ß-selenoamines, can be used as pharmacological agents to diminish the oxidative damage. Thus, the aim of this study was to investigate the protective effect of the antioxidant ß-selenoamines on TAA-induced oxidative stress in mice. Here, we observed that a single intraperitoneal injection of TAA (200 mg/kg) dramatically elevated some parameters of oxidative stress, such as lipid peroxidation and reactive oxygen species (ROS) production, as well as depleted cellular antioxidant defenses. In addition, TAA-induced edema and morphological changes in the liver, which correlate with high serum aspartate and alanine aminotransferase enzyme activities, and a decrease in cell viability. Conversely, a significant reduction in liver lipid peroxidation, ROS production, and edema was observed in animals that received an intraperitoneal injection of ß-selenoamines (15.6 mg/kg) 1 h after TAA administration.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Aminas/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tioacetamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...